【读点论文】基于二维伽马函数的光照不均匀图像自适应校正算法

基于二维伽马函数的光照不均匀图像自适应校正算法

  • 摘 要:提出了一种基于二维伽马函数的光照不均匀图像自适应校正算法.利用多尺度高斯函数提取出场景的光照分量,然后构造了一种二维伽马函数,并利用光照分量的分布特性调整二维伽马函数的参数,降低光照过强区域图像的亮度值,提高光照过暗区域图像的亮度值,最终实现对光照不均匀图像的自适应的校正处理.通过与经典算法对比表明,本文算法可以更好地降低光照不均匀对图像的影响,提高图像的质量.

  • 在视频和图像的采集过程中,由于受到地物环境复杂、物品之间相互遮挡以及环境光照条件多变等因素的影响,经常会导致场景的光照不均匀,主要表现为图像中亮的区域光线足够或者过强,而暗的区域照度不足,导致一些重要的细节信息无法凸显甚至被掩盖掉,严重影响了图像的视觉效果和应用价值,因此开展光照不均匀图像的校正研究,消除不均匀光照对图像的影响,已经成为当前图像处理领域的一个研究热点

  • 光照不均匀图像校正的方法主要分为有参考的校正方法和无参考的校正方法两大类.由于前者需要参照某标样图像进行校正,而这样的图像在实际应用过程中很难获取,因此无参考的光照不均匀校正算法研究受到了广泛的关注.目前无参考的光照不均匀校正的方法主要有基于Retinex理论的算法、直方图均衡化(HE)方法、非锐化掩膜法、形态学滤波法和基于空间照度图的方法等. 基于Retinex理论的方法具有色彩恒常性,但是这类方法会在图像亮度突变的地方产生光晕现象;直方图均衡化方法因其具有算法简单、运算量小的优点被广泛用于图像增强处理,但是对光照不均匀图像处理结果存在过增强、色彩失真和灰阶突变处噪声放大等问题;非锐化掩膜方法把图像分解为高频分量和低频分量后分别进行处理,但是实际应用中很难准确地找到最优的高频和低频分界阈值,兼顾细节增强和自然性保持之间的平衡;形态学滤波法可以改善图像的可视性,但是会改变图像的自然特征;基于空间可变照度图的方法利用场景的光照分布特征对图像进行校正,但是其利用单尺度高斯函数的方法求解出来的光照分量存在照度细节信息表现力差等问题。

  • 本文利多尺度高斯函数提取出光照不均匀图像的光照分量,然后构造了一种基于二维伽马函数的自适应亮度校正函数,并利用光照分量的分布特性自适应地调整二维伽马函数的参数,对光照不均匀图像进行自适应的校正处理,在有效保留原图像有效信息的前提下,实现对光照不均匀图像校正的目的,不仅能够有效地提升图像的视觉效果,而且可以发现更多暗处的细节信息,为光照不均匀图像的校正处理研究提供有价值的参考.

光照分量的提取

光照-反射成像模型

  • 根据成像原理,可见光范围内所成的像是由于场景内物体表面发出的光到达成像单元后产生的.通常,一幅数字图像可以看作是一个二维函数f(x,y),函数的值即为坐标(x,y)点处的图像的亮度值.f(x,y)由入射到场景内的光照分量i(x,y)和物体表面的反射分量r(x,y)两部分的乘积构成,其基本理论模型的表达式如下:

    • f ( x , y ) = i ( x , y ) r ( x , y ) f(x,y)=i(x,y)r(x,y) f(x,y)=i(x,y)r(x,y)

    • 将这种模型称为照度-反射成像模型,其空间关系如下图所示.

    • 在这里插入图片描述

    • 光照反射成像模型空间关系图

  • 在光照-反射成像模型中光照分量表征图像的低频特性,而反射分量反映图像的高频细节信息,决定了图像的本质特性.对于光照均匀的图像而言,其光照分量在空间内近似均匀分布,即在任何位置、任何方向上的强度都一致,因此图像的整体质量比较好;而对于光照不均匀的图像,由于场景中的光照分量的分布不均匀,导致图像中光照强的区域中图像的亮度值足够或者过强,而光照弱的区域图像的亮度值不足,不仅降低了图像的视觉质量,而且会导致一些重要的细节信息无法提取,因此,对光照不均匀图像的校正处理就显得非常重要.

基于多尺度高斯函数的光照分量的提取

  • 为了实现对光照不均匀图像的校正处理,准确提取出场景的光照分量非常重要,但是对于常用的光学成像设备而言,其获取的实际场景的图像是由光照分量和反射分量共同作用的结果,并不具有分离出光照分量的功能,因此只能基于某种假设条件的基础上,通过建立数学模型等手段才能从原始图像中计算出光照分量

  • 根据 Retinex理论,做如下假设:真实场景图像的光照分量主要存在于图像低频部分并且整体变化平缓;而反射分量则主要存在于图像高频部分,如边缘、纹理等处,其变化比较剧烈。因此希望提取出的场景的光照分量只包含光照变化信息,不包含图像的细节信息,以便更好地满足场景光照分量的假设条件,目前光照分量的计算方法比较多,比如基于双边滤波的方法、利用 Mean-shift 滤波的方法、基于 Top-hat 的方法、基于线性引导滤波函数的方法,以及 Retinex 理论中基于多尺度高斯函数(滤波器)的方法等,鉴于多尺度高斯函数的方法可以有效地压缩动态范围并准确地估计出场景的照射分从量,因此本文选用多尺度高斯函数的方法来提取光照不均勾图像的光照分量,用到的高斯函数的形式为

    • G ( x , y ) = λ e x p ( − x 2 + y 2 c 2 ) G(x,y)=λexp(-\frac {x^2 +y^2}{c^2}) G(x,y)=λexp(c2x2+y2)

    • 式中:c为尺度因子; λ 为归一化常数,确保高斯函数 G(x,y) 满足归一化条件,即 ∬ G ( x , y ) d x d y = 1 ∬G(x,y)dxdy=1 G(x,y)dxdy=1 .利用高斯函数和原图像做卷积,即可得到光照分量的估计值,其结果如下

    • I ( x , y ) = F ( x , y ) G ( x , y ) . I(x,y)=F(x,y)G(x,y). I(x,y)=F(x,y)G(x,y).

    • 式中:F(x,y)为输入图像;I(x,y) 为估计出来的光照分量.

  • 由 Retinex理论可知,高斯函数的尺度因子 c 的取值决定了卷积核的作用范围: c 的值越大,高斯函数卷积核的范围越大,色调保持的能力越强,提取出的光照值的全局特性越好; 反之 c 的取值越小,高斯函数卷积核的范围越小,动态范围压缩的效果越好,提取出的光照值的局部特性越明显,为了同时兼顾提取出的光照值的全局特性和局部特性,本文采用多尺度高斯函数的方法,利用不同尺度的高斯函数分别提取出场景的光照分量后进行加权,最终得到光照分量的估计值,其表达式为

    • I ( x , y ) = ∑ i = 1 N ω i [ F ( x , y ) G i ( x , y ) ] I(x,y)=∑^N_{i=1}ω_i[F(x,y)G_i(x,y)] I(x,y)=i=1Nωi[F(x,y)Gi(x,y)]

    • 式中:I(x,y) 为 (x,y) 点处由多个不同尺度的高斯函数提取并加权后的光照分量值; ω_i 为第i个尺度高斯函数提取出的光照分量的权系数; i=1,2……N为用到的尺度数,考虑到光照分量提取的精度和运算量之间的均衡,本文取 N=3,即用3个不同尺度的高斯函数提取光照分量的值(所选用的尺度因子 c 的值分别为15,80和250),并且将每一个尺度提取出的光照分量的权系数设定为1/3. 利用3尺度的高斯函数分别提取灰度图像和彩色图像场景的光照分量,其结果如下图所示,

    • 在这里插入图片描述

    • 灰度图像中提取出的光照分量

    • 在这里插入图片描述

    • 彩色图像中提取出的光照分量

  • 由上图可知,本文使用的多尺度高斯函数提取出来的光照分量可以有效地描述光照变化的信息,而且不带有细节信息,非常符合对光照分量提取的特征要求,可见,这种基于多尺度高斯函数的方法可以有效地提取出场景的光照分量,

基于二维伽马函数的自适应亮度校正

  • 在提取出场景的光照分量后,就可以根据光照分量的分布特性构造光照不均匀校正函数,对光照不均匀图像进行校正处理,降低光照过强区域的亮度值,提高光照过低区域的亮度值,为了实现上述目标,本文提出了一种基于二维伽马函数的自适应亮度校正方法,利用图像的光照分量的分布特性自适应地调整二维伽马所数的参数,实现提高光照不均匀图像整体质量的目的.对于输入的图像 F(x,y) ,假设提取出的光照分量为 I(x,y) 。在参考文献[A space-variant luminance map based color image enhancement]的基础上,构造了一种新的二维伽马函数。其表达式如下

    • O ( x , y ) = 255 ( F ( x , y ) 255 ) γ , γ = 1 2 I ( x , y ) − m m O(x,y)=255(\frac{F(x,y)}{255})^γ,γ=\frac 12^{\frac{I(x,y)-m}{m}} O(x,y)=255(255F(x,y))γ,γ=21mI(x,y)m

    • 式中: O(x,y) 为校正后的输出图像的亮度值; γ 为用于亮度增强的指数值,其中包含了图像的光照分量特性;m 为光照分量的亮度均值.如果光照分量的亮度均值为128,则在不同的光照分量值下,输入图像的亮度值经过二维伽马函数校正后的输出曲线如下图所示.

    • 在这里插入图片描述

    • 不同光照条件下二维伽马函数校正后图像亮度值

  • 由上图 可知,当某一点 ( x,y ) 处的光照值小于整幅光照分量的均值(本图假设光照分量的均值为128)时,二维伽马函数会依指数增强原图像在该点处的亮度值.假设当输人图像 I(x,y) 中某点(x,y)处提取到的光照值为64、输入图像在该点的亮度值为 120 时,经过校正后的输出图像的亮度值为149。可见在输出图像中的表现为提高原图像中光照过低区域图像的亮度.

  • 当某一点 (x,y) 处的光照值大于整幅光照分量的均值时,二维伽马函数会依指数衰减原图像在该点处的亮度值,再比如当输入图像某点 (x,y) 处输人图像的亮度值仍为120,但是假设该点的光照值为 192 时,经过校正后的输出图像中该点的亮度值则变为 108,其结果为降低了原图像中光照过高处图像的亮度。

  • 下图是利用本文构造的二维伽马函数校正前后图像的直方图的对比.由下图可知经过该二维伽马校正后,原图像中亮度过低的区域的亮度得到了增强,而光照过强的区域的亮度得到了衰减,同时压缩了图像的动态范围,因此会得到较好的光照不均匀校正效果.正是在光照分量的均值和每一个像素点处的光照值的共同作用下,本文提出的这种二维伽马函数可以对原光照不均匀图像进行自适应的校正处理,最终降低光照不均匀对图像的影响,提高图像的质量.

    • 在这里插入图片描述

    • 二维伽马函数校正前后图像的直方图

算法实现

  • 由人眼视觉系统的感知特性可知,人眼对亮度的敏感程度要高于对颜色的敏感程度,因此对亮度分量的校正处理是光照不均匀校正算法的关键,对于彩色图像,如果直接在RGB 3 个通道做校正处理,不仅很难保证每个通道都按照相同的比例增强或者衰减,从而导致校正处理后的图像发生色彩失真现象,而且同时对3个通道进行处理的运算量也比较大.鉴于HSV色彩空间更符合人眼的视觉特性,而且 HSV色彩空间中的色调(H)饱和度(S)和亮度(V)三者相互独立,因此对于亮度V的操作不会影响图像的色彩信息,因此本文选择在HSV色彩空间中实现对光照不均匀的彩色图像进行校正处理,算法的流程图如下图所示
    • 在这里插入图片描述

实验结果与分析

  • 针对整体光照亮度比较低的图像(场景1:光照分量均值小于128)整体光照亮度适中(场景2:光照分量均值约等于128)及整体光照亮度较高(场景3:光照分量的均值大于128)这3种典型的场景,分别利用直方图均衡化算法、带色彩恢复的多尺度Retinex(MSRCR)算法和本文算法进行处理,处理后的结果如图 7~图9所示

    • 在这里插入图片描述
  • 由图7~图9可以看出,对于整体光照亮度较低、整体光照亮度适中和整体光照亮度较高这 3 种类型的光照不均匀图像进行校正时,直方图均衡化算法的处理结果会发生严重的色彩失真和过度增强的现象,MSRCR 算法处理的结果虽然具有色彩保持特性,但是对于光照过低区域存在噪声放大现象,而且在树叶等亮度突变处出现了光晕现象,严重影响了这两种算法的处理效果.本文提出的算法对 3 种不同类型的光照不均匀图像都取得了比较好的校正效果,不仅适当地降低了光照过强区域的图像亮度,而且有效地提高了光照过低区域的图像的亮度,使亮度过低区域的细节信息得到了很好的呈现.另外,本文提出的算法还具有很好的色彩保持特性,经过校正处理后的图像的色彩比较自然,很好地保持了原图像的色彩信息.

  • 为了进一步对比不同算法的处理效果,本文使用标准差、平均梯度和熵等客观指标进行衡量.标准差(standard diviation,SD)可以反映图像的对比度特征,平均梯度(average gradient,AG)是图像清晰度的重要衡量指标,熵(Entropy)可以衡量图像所携带的信息量.表1中所用到的3种场景的图像经过不同方法处理前后的数据对比如下表所示

    • 在这里插入图片描述

    • 由表中的数据可知,经过本文算法处理后图像的质量普遍有所改善,主要表现在标准差的值变大,说明图像的对比度信息变得更好;梯度值有较大提升,说明处理后的图像的清晰度有所提高;熵的值提高,说明校正后图像中所包含的信息量进一步变大,进而可以从中提取到更多的信息,由此可见本文提出的算法对不同场景的光照不均勾图像均取得了比较好的校正效果

结论

  • 为了降低光照不均匀对图像质量的影响,本文提出了一种光照不均匀图像的校正算法,对光照不均匀图像进行自适应校正处理,取得了比较好的校正效果:未来的研究可以将光照不均匀校正算法封装成功能模块,嵌入到智能监控等系统中,可以显著提高视频监控系统在光照不均匀条件下的成像质量,也可以将算法嵌入到摄像头等前端图像采集设备,在成像的同时进行光照不均匀校正处理,可以大幅度地降低后处理的工作量,因此具有非常广阔的应用前景.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/774600.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

服务器U盘安装Centos 7时提示Warning:/dev/root does not exist

这是没有找到正确的镜像路径导致的,我们可以在命令行输入ls /dev看一下有哪些盘符 像图中红色圈起来的就是我插入U盘的盘符,大家的输几盘可能做了多个逻辑盘,这种情况下就可以先将U盘拔掉再ls /dev看一下和刚才相比少了那两个盘符&#xff0c…

Redis高级篇之最佳实践

Redis高级篇之最佳实践 今日内容 Redis键值设计批处理优化服务端优化集群最佳实践 1、Redis键值设计 1.1、优雅的key结构 Redis的Key虽然可以自定义,但最好遵循下面的几个最佳实践约定: 遵循基本格式:[业务名称]:[数据名]:[id]长度不超过…

空调计费系统是什么,你知道吗

空调计费系统是一种通过对使用空调的时间和能源消耗进行监测和计量来进行费用计算的系统。它广泛应用于各种场所,如家庭、办公室、商场等,为用户提供了方便、准确的能源使用管理和费用控制。 可实现功能 智能计费:中央空调分户计费系统通过智…

光电液位传感器在宠物洗澡机的应用

光电液位传感器在宠物洗澡机中的应用,为洗澡机的智能化管理提供了重要支持和保障。这种先进的传感技术不仅提升了设备的操作便捷性,还大幅度提高了洗澡过程的安全性和效率。 宠物洗澡机作为宠物护理的重要设备,其水位的控制至关重要。光电液…

SD16S1Y 符合GB2312标准16X16点阵汉字库芯片IC

一般概述 SD16S1Y是一款内含16x16点阵的汉字库芯片,支持GB2312国标简体汉字(含有国家信标委 合法授权)、ASCII字符。排列格式为竖置横排。用户通过字符内码,利用本手册提供的方法计算出 该字符点阵在芯片中的地址,可从该地址连续读出字…

STM32/GD32驱动步进电机芯片TM2160

文章目录 官方概要简单介绍整体架构流程 官方概要 TMC2160是一款带SPI接口的大功率步进电机驱动IC。它具有业界最先进的步进电机驱动器,具有简单的步进/方向接口。采用外部晶体管,可实现高动态、高转矩驱动。基于TRINAMICs先进的spreadCycle和stealthCh…

以太网协议介绍——UDP

注:需要先了解一些以太网的背景知识,方便更好理解UDP协议、 以太网基础知识一 以太网基础知识二 UDP协议 UDP即用户数据报协议,是一种面向无连接的传输层协议,属于 TCP/IP 协议簇的一种。UDP具有消耗资源少、通信效率高等优点&a…

第二届计算机、视觉与智能技术国际会议(ICCVIT 2024)

随着科技的飞速发展,计算机、视觉与智能技术已成为推动现代社会进步的重要力量。为了汇聚全球顶尖专家学者,共同探讨这一领域的最新研究成果和前沿技术,第二届计算机、视觉与智能技术国际会议(ICCVIT 2024)将于2024年1…

从海上长城到数字防线:视频技术在海域边防现代化中的创新应用

随着全球化和科技发展的加速,海域安全问题日益凸显其重要性。海域边防作为国家安全的第一道防线,其监控和管理面临着诸多挑战。近年来,视频技术的快速发展为海域边防场景提供了新的解决方案,其高效、实时、远程的监控特点极大地提…

【稳定检索/投稿优惠】2024年教育、人文发展与艺术国际会议(EHDA 2024)

2024 International Conference on Education, Humanities Development and Arts 2024年教育、人文发展与艺术国际会议 【会议信息】 会议简称:EHDA 2024 大会时间:点击查看 截稿时间:点击查看 大会地点:中国北京 会议官网&#…

云微客短视频矩阵全域营销,更高效的获客引流方式!

在抖音这样一个拥有海量用户和内容的短视频平台上,单一账号往往难以覆盖我们的客户群体,甚至于每天发布四五条视频,所引发的流量也是微乎其微的。在竞争如此激烈的市场环境中,商家企业无不想方设法追求更高效的获客引流方式&#…

【selenium 】操作元素

操作元素 元素操作鼠标操作键盘操作 元素操作 元素操作示例清空输入框clear()deiver.find_element_by_id(“username”).clear()输入文字send_keys()deiver.find_element_by_id(“username”).send_keys(‘zs’)元素点击 click()deiver.find_element_by_id(“login”).click()…

【ARM系列】1 of N SPI

1 of N模式 SPI 概述配置流程 概述 GIC-600AE支持1 of N模式SPI。在此模式下可以将SPI target到多个core,并且GIC-600AE可以选择哪些内核接收SPI。 GIC-600AE只向处于powered up 并且使能中断组的core发送SPI。 GIC-600AE会优先考虑那些被认为是active的核&#xf…

ORB-SLAM3源码分析(案例分析)

一、ORB-SLAM3简介 ORB-SLAM3 (Oriented FAST and Rotated BRIEF SLAM 3) 是一种视觉SLAM(Simultaneous Localization and Mapping,同时定位与地图构建)系统,用于机器人和计算机视觉领域。它是ORB-SLAM系列的第三个版本&#xff…

Pandas 入门 15 题

Pandas 入门 15 题 1. 相关知识点1.1 修改DataFrame列名1.2 获取行列数1.3 显示前n行1.4 条件数据选取值1.5 创建新列1.6 删去重复的行1.7 删除空值的数据1.9 修改列名1.10 修改数据类型1.11 填充缺失值1.12 数据上下合并1.13 pivot_table透视表的使用1.14 melt透视表的使用1.1…

聊天交友系统开发专业语聊交友app开发搭建同城交友开发婚恋交友系统相亲app开发

1、上麦相亲互动:直播间内除了红娘外,还有男女用户两个视频麦位,直播间符合要求的用户可以申请上麦 2、公屏聊天:为上麦用户可以通过在公屏发言的方式参与直播间内的话题互动。 3、私信,异性用户之间可以发送私信消息,通过付费或开通会员可解…

ingress-nginx控制器证书不会自动更新问题

好久没更新了,正好今天遇到了一个很有意思的问题,在这里给大家分享下,同时也做下记录。 背景 最近想做个实验,当k8s集群中secret更新后,ingress-nginx控制器会不会自动加载新的证书。我用通义千问搜了下,…

笔记:Git学习之应用场景和使用经验

目标:整理Git工具的应用场景和使用经验 一、开发环境 Git是代码版本控制工具;Github是代码托管平台。 工具组合:VSCode Git 需要安装的软件:vscode、Git 其中vscode需要安装的插件:GitLens、Git History 二、应用…

客户文章|肠道微生物群在强迫症发病中的关键作用:琥珀酸信号揭示新机制

凌恩客户上海交通大学在《Molecular Psychiatry》期刊上(IF11.0)发表了关于强迫症患者肠道微生物菌群通过琥珀酸影响小鼠行为及病况的文章。该研究通过将强迫症患者的粪便微生物群移植至小鼠体内,诱导小鼠出现强迫症行为,改变了其肠道微生物群&#xff0…

LLM指令微调Prompt的最佳实践(五):文本转换Prompt

文章目录 1. 前言2. Prompt定义3. 编写文本转换的Prompt3.1 文本翻译3.1.1 识别语种3.1.2 多语种转换3.1.3 语气转换3.1.4 综合翻译器 3.2 风格转换3.3 文本格式转换3.4 拼写/语法纠错 4. 参考 1. 前言 前情提要: 《LLM指令微调Prompt的最佳实践(一&…